How to convert Runnables as Tools
Here we will demonstrate how to convert a LangChain Runnable
into a tool that can be used by agents, chains, or chat models.
Dependenciesβ
Note: this guide requires langchain-core
>= 0.2.13. We will also use OpenAI for embeddings, but any LangChain embeddings should suffice. We will use a simple LangGraph agent for demonstration purposes.
%%capture --no-stderr
%pip install -U langchain-core langchain-openai langgraph
LangChain tools are interfaces that an agent, chain, or chat model can use to interact with the world. See here for how-to guides covering tool-calling, built-in tools, custom tools, and more information.
LangChain tools-- instances of BaseTool-- are Runnables with additional constraints that enable them to be invoked effectively by language models:
- Their inputs are constrained to be serializable, specifically strings and Python
dict
objects; - They contain names and descriptions indicating how and when they should be used;
- They may contain a detailed args_schema for their arguments. That is, while a tool (as a
Runnable
) might accept a singledict
input, the specific keys and type information needed to populate a dict should be specified in theargs_schema
.
Runnables that accept string or dict
input can be converted to tools using the as_tool method, which allows for the specification of names, descriptions, and additional schema information for arguments.
Basic usageβ
With typed dict
input:
from typing import List
from langchain_core.runnables import RunnableLambda
from typing_extensions import TypedDict
class Args(TypedDict):
a: int
b: List[int]
def f(x: Args) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(
name="My tool",
description="Explanation of when to use tool.",
)
print(as_tool.description)
as_tool.args_schema.schema()
Explanation of when to use tool.
{'title': 'My tool',
'type': 'object',
'properties': {'a': {'title': 'A', 'type': 'integer'},
'b': {'title': 'B', 'type': 'array', 'items': {'type': 'integer'}}},
'required': ['a', 'b']}
as_tool.invoke({"a": 3, "b": [1, 2]})
'6'
Without typing information, arg types can be specified via arg_types
:
from typing import Any, Dict
def g(x: Dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(g)
as_tool = runnable.as_tool(
name="My tool",
description="Explanation of when to use tool.",
arg_types={"a": int, "b": List[int]},
)
Alternatively, the schema can be fully specified by directly passing the desired args_schema for the tool:
from pydantic import BaseModel, Field
class GSchema(BaseModel):
"""Apply a function to an integer and list of integers."""
a: int = Field(..., description="Integer")
b: List[int] = Field(..., description="List of ints")
runnable = RunnableLambda(g)
as_tool = runnable.as_tool(GSchema)
String input is also supported:
def f(x: str) -> str:
return x + "a"
def g(x: str) -> str:
return x + "z"
runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")
'baz'
In agentsβ
Below we will incorporate LangChain Runnables as tools in an agent application. We will demonstrate with:
We first instantiate a chat model that supports tool calling:
- OpenAI
- Anthropic
- Azure
- Cohere
- NVIDIA
- FireworksAI
- Groq
- MistralAI
- TogetherAI
pip install -qU langchain-openai
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini")
pip install -qU langchain-anthropic
import getpass
import os
os.environ["ANTHROPIC_API_KEY"] = getpass.getpass()
from langchain_anthropic import ChatAnthropic
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
pip install -qU langchain-openai
import getpass
import os
os.environ["AZURE_OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import AzureChatOpenAI
llm = AzureChatOpenAI(
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],
openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
)
pip install -qU langchain-google-vertexai
import getpass
import os
os.environ["GOOGLE_API_KEY"] = getpass.getpass()
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model="gemini-1.5-flash")
pip install -qU langchain-cohere
import getpass
import os
os.environ["COHERE_API_KEY"] = getpass.getpass()
from langchain_cohere import ChatCohere
llm = ChatCohere(model="command-r-plus")
pip install -qU langchain-nvidia-ai-endpoints
import getpass
import os
os.environ["NVIDIA_API_KEY"] = getpass.getpass()
from langchain import ChatNVIDIA
llm = ChatNVIDIA(model="meta/llama3-70b-instruct")
pip install -qU langchain-fireworks
import getpass
import os
os.environ["FIREWORKS_API_KEY"] = getpass.getpass()
from langchain_fireworks import ChatFireworks
llm = ChatFireworks(model="accounts/fireworks/models/llama-v3p1-70b-instruct")
pip install -qU langchain-groq
import getpass
import os
os.environ["GROQ_API_KEY"] = getpass.getpass()
from langchain_groq import ChatGroq
llm = ChatGroq(model="llama3-8b-8192")
pip install -qU langchain-mistralai
import getpass
import os
os.environ["MISTRAL_API_KEY"] = getpass.getpass()
from langchain_mistralai import ChatMistralAI
llm = ChatMistralAI(model="mistral-large-latest")
pip install -qU langchain-openai
import getpass
import os
os.environ["TOGETHER_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key=os.environ["TOGETHER_API_KEY"],
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
)
Following the RAG tutorial, let's first construct a retriever:
from langchain_core.documents import Document
from langchain_core.vectorstores import InMemoryVectorStore
from langchain_openai import OpenAIEmbeddings
documents = [
Document(
page_content="Dogs are great companions, known for their loyalty and friendliness.",
),
Document(
page_content="Cats are independent pets that often enjoy their own space.",
),
]
vectorstore = InMemoryVectorStore.from_documents(
documents, embedding=OpenAIEmbeddings()
)
retriever = vectorstore.as_retriever(
search_type="similarity",
search_kwargs={"k": 1},
)
We next create use a simple pre-built LangGraph agent and provide it the tool:
from langgraph.prebuilt import create_react_agent
tools = [
retriever.as_tool(
name="pet_info_retriever",
description="Get information about pets.",
)
]
agent = create_react_agent(llm, tools)
for chunk in agent.stream({"messages": [("human", "What are dogs known for?")]}):
print(chunk)
print("----")
{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_W8cnfOjwqEn4cFcg19LN9mYD', 'function': {'arguments': '{"__arg1":"dogs"}', 'name': 'pet_info_retriever'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 19, 'prompt_tokens': 60, 'total_tokens': 79}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-d7f81de9-1fb7-4caf-81ed-16dcdb0b2ab4-0', tool_calls=[{'name': 'pet_info_retriever', 'args': {'__arg1': 'dogs'}, 'id': 'call_W8cnfOjwqEn4cFcg19LN9mYD'}], usage_metadata={'input_tokens': 60, 'output_tokens': 19, 'total_tokens': 79})]}}
----
{'tools': {'messages': [ToolMessage(content="[Document(id='86f835fe-4bbe-4ec6-aeb4-489a8b541707', page_content='Dogs are great companions, known for their loyalty and friendliness.')]", name='pet_info_retriever', tool_call_id='call_W8cnfOjwqEn4cFcg19LN9mYD')]}}
----
{'agent': {'messages': [AIMessage(content='Dogs are known for being great companions, known for their loyalty and friendliness.', response_metadata={'token_usage': {'completion_tokens': 18, 'prompt_tokens': 134, 'total_tokens': 152}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-9ca5847a-a5eb-44c0-a774-84cc2c5bbc5b-0', usage_metadata={'input_tokens': 134, 'output_tokens': 18, 'total_tokens': 152})]}}
----
See LangSmith trace for the above run.
Going further, we can create a simple RAG chain that takes an additional parameter-- here, the "style" of the answer.
from operator import itemgetter
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
system_prompt = """
You are an assistant for question-answering tasks.
Use the below context to answer the question. If
you don't know the answer, say you don't know.
Use three sentences maximum and keep the answer
concise.
Answer in the style of {answer_style}.
Question: {question}
Context: {context}
"""
prompt = ChatPromptTemplate.from_messages([("system", system_prompt)])
rag_chain = (
{
"context": itemgetter("question") | retriever,
"question": itemgetter("question"),
"answer_style": itemgetter("answer_style"),
}
| prompt
| llm
| StrOutputParser()
)
Note that the input schema for our chain contains the required arguments, so it converts to a tool without further specification:
rag_chain.input_schema.schema()
{'title': 'RunnableParallel<context,question,answer_style>Input',
'type': 'object',
'properties': {'question': {'title': 'Question'},
'answer_style': {'title': 'Answer Style'}}}
rag_tool = rag_chain.as_tool(
name="pet_expert",
description="Get information about pets.",
)
Below we again invoke the agent. Note that the agent populates the required parameters in its tool_calls
:
agent = create_react_agent(llm, [rag_tool])
for chunk in agent.stream(
{"messages": [("human", "What would a pirate say dogs are known for?")]}
):
print(chunk)
print("----")
{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_17iLPWvOD23zqwd1QVQ00Y63', 'function': {'arguments': '{"question":"What are dogs known for according to pirates?","answer_style":"quote"}', 'name': 'pet_expert'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 28, 'prompt_tokens': 59, 'total_tokens': 87}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-7fef44f3-7bba-4e63-8c51-2ad9c5e65e2e-0', tool_calls=[{'name': 'pet_expert', 'args': {'question': 'What are dogs known for according to pirates?', 'answer_style': 'quote'}, 'id': 'call_17iLPWvOD23zqwd1QVQ00Y63'}], usage_metadata={'input_tokens': 59, 'output_tokens': 28, 'total_tokens': 87})]}}
----
{'tools': {'messages': [ToolMessage(content='"Dogs are known for their loyalty and friendliness, making them great companions for pirates on long sea voyages."', name='pet_expert', tool_call_id='call_17iLPWvOD23zqwd1QVQ00Y63')]}}
----
{'agent': {'messages': [AIMessage(content='According to pirates, dogs are known for their loyalty and friendliness, making them great companions for pirates on long sea voyages.', response_metadata={'token_usage': {'completion_tokens': 27, 'prompt_tokens': 119, 'total_tokens': 146}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5a30edc3-7be0-4743-b980-ca2f8cad9b8d-0', usage_metadata={'input_tokens': 119, 'output_tokens': 27, 'total_tokens': 146})]}}
----
See LangSmith trace for the above run.