ChatWatsonx
ChatWatsonx is a wrapper for IBM watsonx.ai foundation models.
The aim of these examples is to show how to communicate with watsonx.ai
models using LangChain
LLMs API.
Overviewโ
Integration detailsโ
Class | Package | Local | Serializable | JS support | Package downloads | Package latest |
---|---|---|---|---|---|---|
ChatWatsonx | โ | โ | โ |
Model featuresโ
Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Native async | Token usage | Logprobs |
---|---|---|---|---|---|---|---|---|---|
โ | โ | โ | โ | โ | โ | โ | โ | โ | โ |
Setupโ
To access IBM watsonx.ai models you'll need to create an IBM watsonx.ai account, get an API key, and install the langchain-ibm
integration package.
Credentialsโ
The cell below defines the credentials required to work with watsonx Foundation Model inferencing.
Action: Provide the IBM Cloud user API key. For details, see Managing user API keys.
import os
from getpass import getpass
watsonx_api_key = getpass()
os.environ["WATSONX_APIKEY"] = watsonx_api_key
Additionally you are able to pass additional secrets as an environment variable.
import os
os.environ["WATSONX_URL"] = "your service instance url"
os.environ["WATSONX_TOKEN"] = "your token for accessing the CPD cluster"
os.environ["WATSONX_PASSWORD"] = "your password for accessing the CPD cluster"
os.environ["WATSONX_USERNAME"] = "your username for accessing the CPD cluster"
os.environ["WATSONX_INSTANCE_ID"] = "your instance_id for accessing the CPD cluster"
Installationโ
The LangChain IBM integration lives in the langchain-ibm
package:
!pip install -qU langchain-ibm
Instantiationโ
You might need to adjust model parameters
for different models or tasks. For details, refer to Available MetaNames.
parameters = {
"decoding_method": "sample",
"max_new_tokens": 100,
"min_new_tokens": 1,
"stop_sequences": ["."],
}
Initialize the WatsonxLLM
class with the previously set parameters.
Note:
- To provide context for the API call, you must pass the
project_id
orspace_id
. To get your project or space ID, open your project or space, go to the Manage tab, and click General. For more information see: Project documentation or Deployment space documentation. - Depending on the region of your provisioned service instance, use one of the urls listed in watsonx.ai API Authentication.
In this example, weโll use the project_id
and Dallas URL.
You need to specify the model_id
that will be used for inferencing. You can find the list of all the available models in Supported foundation models.
from langchain_ibm import ChatWatsonx
chat = ChatWatsonx(
model_id="ibm/granite-13b-chat-v2",
url="https://us-south.ml.cloud.ibm.com",
project_id="PASTE YOUR PROJECT_ID HERE",
params=parameters,
)
Alternatively, you can use Cloud Pak for Data credentials. For details, see watsonx.ai software setup.
chat = ChatWatsonx(
model_id="ibm/granite-13b-chat-v2",
url="PASTE YOUR URL HERE",
username="PASTE YOUR USERNAME HERE",
password="PASTE YOUR PASSWORD HERE",
instance_id="openshift",
version="4.8",
project_id="PASTE YOUR PROJECT_ID HERE",
params=parameters,
)
Instead of model_id
, you can also pass the deployment_id
of the previously tuned model. The entire model tuning workflow is described in Working with TuneExperiment and PromptTuner.
chat = ChatWatsonx(
deployment_id="PASTE YOUR DEPLOYMENT_ID HERE",
url="https://us-south.ml.cloud.ibm.com",
project_id="PASTE YOUR PROJECT_ID HERE",
params=parameters,
)
Invocationโ
To obtain completions, you can call the model directly using a string prompt.
# Invocation
messages = [
("system", "You are a helpful assistant that translates English to French."),
(
"human",
"I love you for listening to Rock.",
),
]
chat.invoke(messages)
AIMessage(content="Je t'aime pour รฉcouter la Rock.", response_metadata={'token_usage': {'generated_token_count': 12, 'input_token_count': 28}, 'model_name': 'ibm/granite-13b-chat-v2', 'system_fingerprint': '', 'finish_reason': 'stop_sequence'}, id='run-05b305ce-5401-4a10-b557-41a4b15c7f6f-0')
# Invocation multiple chat
from langchain_core.messages import (
HumanMessage,
SystemMessage,
)
system_message = SystemMessage(
content="You are a helpful assistant which telling short-info about provided topic."
)
human_message = HumanMessage(content="horse")
chat.invoke([system_message, human_message])
AIMessage(content='Sure, I can help you with that! Horses are large, powerful mammals that belong to the family Equidae.', response_metadata={'token_usage': {'generated_token_count': 24, 'input_token_count': 24}, 'model_name': 'ibm/granite-13b-chat-v2', 'system_fingerprint': '', 'finish_reason': 'stop_sequence'}, id='run-391776ff-3b38-4768-91e8-ff64177149e5-0')
Chainingโ
Create ChatPromptTemplate
objects which will be responsible for creating a random question.
from langchain_core.prompts import ChatPromptTemplate
system = (
"You are a helpful assistant that translates {input_language} to {output_language}."
)
human = "{input}"
prompt = ChatPromptTemplate.from_messages([("system", system), ("human", human)])
Provide a inputs and run the chain.
chain = prompt | chat
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love Python",
}
)
AIMessage(content='Ich liebe Python.', response_metadata={'token_usage': {'generated_token_count': 5, 'input_token_count': 23}, 'model_name': 'ibm/granite-13b-chat-v2', 'system_fingerprint': '', 'finish_reason': 'stop_sequence'}, id='run-1b1ccf5d-0e33-46f2-a087-e2a136ba1fb7-0')
Streaming the Model outputโ
You can stream the model output.
system_message = SystemMessage(
content="You are a helpful assistant which telling short-info about provided topic."
)
human_message = HumanMessage(content="moon")
for chunk in chat.stream([system_message, human_message]):
print(chunk.content, end="")
The moon is a natural satellite of the Earth, and it has been a source of fascination for humans for centuries.
Batch the Model outputโ
You can batch the model output.
message_1 = [
SystemMessage(
content="You are a helpful assistant which telling short-info about provided topic."
),
HumanMessage(content="cat"),
]
message_2 = [
SystemMessage(
content="You are a helpful assistant which telling short-info about provided topic."
),
HumanMessage(content="dog"),
]
chat.batch([message_1, message_2])
[AIMessage(content='Cats are domestic animals that belong to the Felidae family.', response_metadata={'token_usage': {'generated_token_count': 13, 'input_token_count': 24}, 'model_name': 'ibm/granite-13b-chat-v2', 'system_fingerprint': '', 'finish_reason': 'stop_sequence'}, id='run-71a8bd7a-a1aa-497b-9bdd-a4d6fe1d471a-0'),
AIMessage(content='Dogs are domesticated mammals of the family Canidae, characterized by their adaptability to various environments and social structures.', response_metadata={'token_usage': {'generated_token_count': 24, 'input_token_count': 24}, 'model_name': 'ibm/granite-13b-chat-v2', 'system_fingerprint': '', 'finish_reason': 'stop_sequence'}, id='run-22b7a0cb-e44a-4b68-9921-872f82dcd82b-0')]
Tool callingโ
ChatWatsonx.bind_tools()โ
Please note that ChatWatsonx.bind_tools
is on beta state, so right now we only support mistralai/mixtral-8x7b-instruct-v01
model.
You should also redefine max_new_tokens
parameter to get the entire model response. By default max_new_tokens
is set to 20.
from langchain_ibm import ChatWatsonx
parameters = {"max_new_tokens": 200}
chat = ChatWatsonx(
model_id="mistralai/mixtral-8x7b-instruct-v01",
url="https://us-south.ml.cloud.ibm.com",
project_id="PASTE YOUR PROJECT_ID HERE",
params=parameters,
)
from pydantic import BaseModel, Field
class GetWeather(BaseModel):
"""Get the current weather in a given location"""
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
llm_with_tools = chat.bind_tools([GetWeather])
ai_msg = llm_with_tools.invoke(
"Which city is hotter today: LA or NY?",
)
ai_msg
AIMessage(content='', additional_kwargs={'function_call': {'type': 'function'}, 'tool_calls': [{'type': 'function', 'function': {'name': 'GetWeather', 'arguments': '{"location": "Los Angeles"}'}, 'id': None}, {'type': 'function', 'function': {'name': 'GetWeather', 'arguments': '{"location": "New York"}'}, 'id': None}]}, response_metadata={'token_usage': {'generated_token_count': 99, 'input_token_count': 320}, 'model_name': 'mistralai/mixtral-8x7b-instruct-v01', 'system_fingerprint': '', 'finish_reason': 'eos_token'}, id='run-38627104-f2ac-4edb-8390-d5425fb65979-0', tool_calls=[{'name': 'GetWeather', 'args': {'location': 'Los Angeles'}, 'id': None}, {'name': 'GetWeather', 'args': {'location': 'New York'}, 'id': None}])
AIMessage.tool_callsโ
Notice that the AIMessage has a tool_calls
attribute. This contains in a standardized ToolCall format that is model-provider agnostic.
ai_msg.tool_calls
[{'name': 'GetWeather', 'args': {'location': 'Los Angeles'}, 'id': None},
{'name': 'GetWeather', 'args': {'location': 'New York'}, 'id': None}]
Relatedโ
- Chat model conceptual guide
- Chat model how-to guides