Google Firestore (Native Mode)
Firestore is a serverless document-oriented database that scales to meet any demand. Extend your database application to build AI-powered experiences leveraging Firestore's Langchain integrations.
This notebook goes over how to use Firestore to save, load and delete langchain documents with FirestoreLoader
and FirestoreSaver
.
Learn more about the package on GitHub.
Before You Beginโ
To run this notebook, you will need to do the following:
After confirmed access to database in the runtime environment of this notebook, filling the following values and run the cell before running example scripts.
# @markdown Please specify a source for demo purpose.
SOURCE = "test" # @param {type:"Query"|"CollectionGroup"|"DocumentReference"|"string"}
๐ฆ๐ Library Installationโ
The integration lives in its own langchain-google-firestore
package, so we need to install it.
%pip install -upgrade --quiet langchain-google-firestore
Colab only: Uncomment the following cell to restart the kernel or use the button to restart the kernel. For Vertex AI Workbench you can restart the terminal using the button on top.
# # Automatically restart kernel after installs so that your environment can access the new packages
# import IPython
# app = IPython.Application.instance()
# app.kernel.do_shutdown(True)
โ Set Your Google Cloud Projectโ
Set your Google Cloud project so that you can leverage Google Cloud resources within this notebook.
If you don't know your project ID, try the following:
- Run
gcloud config list
. - Run
gcloud projects list
. - See the support page: Locate the project ID.
# @markdown Please fill in the value below with your Google Cloud project ID and then run the cell.
PROJECT_ID = "my-project-id" # @param {type:"string"}
# Set the project id
!gcloud config set project {PROJECT_ID}
๐ Authenticationโ
Authenticate to Google Cloud as the IAM user logged into this notebook in order to access your Google Cloud Project.
- If you are using Colab to run this notebook, use the cell below and continue.
- If you are using Vertex AI Workbench, check out the setup instructions here.
from google.colab import auth
auth.authenticate_user()
Basic Usageโ
Save documentsโ
FirestoreSaver
can store Documents into Firestore. By default it will try to extract the Document reference from the metadata
Save langchain documents with FirestoreSaver.upsert_documents(<documents>)
.
from langchain_core.documents import Document
from langchain_google_firestore import FirestoreSaver
saver = FirestoreSaver()
data = [Document(page_content="Hello, World!")]
saver.upsert_documents(data)
Save documents without referenceโ
If a collection is specified the documents will be stored with an auto generated id.
saver = FirestoreSaver("Collection")
saver.upsert_documents(data)
Save documents with other referencesโ
doc_ids = ["AnotherCollection/doc_id", "foo/bar"]
saver = FirestoreSaver()
saver.upsert_documents(documents=data, document_ids=doc_ids)
Load from Collection or SubCollectionโ
Load langchain documents with FirestoreLoader.load()
or Firestore.lazy_load()
. lazy_load
returns a generator that only queries database during the iteration. To initialize FirestoreLoader
class you need to provide:
source
- An instance of a Query, CollectionGroup, DocumentReference or the single\
-delimited path to a Firestore collection.
from langchain_google_firestore import FirestoreLoader
loader_collection = FirestoreLoader("Collection")
loader_subcollection = FirestoreLoader("Collection/doc/SubCollection")
data_collection = loader_collection.load()
data_subcollection = loader_subcollection.load()
Load a single Documentโ
from google.cloud import firestore
client = firestore.Client()
doc_ref = client.collection("foo").document("bar")
loader_document = FirestoreLoader(doc_ref)
data = loader_document.load()
Load from CollectionGroup or Queryโ
from google.cloud.firestore import CollectionGroup, FieldFilter, Query
col_ref = client.collection("col_group")
collection_group = CollectionGroup(col_ref)
loader_group = FirestoreLoader(collection_group)
col_ref = client.collection("collection")
query = col_ref.where(filter=FieldFilter("region", "==", "west_coast"))
loader_query = FirestoreLoader(query)
Delete documentsโ
Delete a list of langchain documents from Firestore collection with FirestoreSaver.delete_documents(<documents>)
.
If document ids is provided, the Documents will be ignored.
saver = FirestoreSaver()
saver.delete_documents(data)
# The Documents will be ignored and only the document ids will be used.
saver.delete_documents(data, doc_ids)
Advanced Usageโ
Load documents with customize document page content & metadataโ
The arguments of page_content_fields
and metadata_fields
will specify the Firestore Document fields to be written into LangChain Document page_content
and metadata
.
loader = FirestoreLoader(
source="foo/bar/subcol",
page_content_fields=["data_field"],
metadata_fields=["metadata_field"],
)
data = loader.load()
Customize Page Content Formatโ
When the page_content
contains only one field the information will be the field value only. Otherwise the page_content
will be in JSON format.
Customize Connection & Authenticationโ
from google.auth import compute_engine
from google.cloud.firestore import Client
client = Client(database="non-default-db", creds=compute_engine.Credentials())
loader = FirestoreLoader(
source="foo",
client=client,
)
Relatedโ
- Document loader conceptual guide
- Document loader how-to guides