Couchbase
Couchbase is an award-winning distributed NoSQL cloud database that delivers unmatched versatility, performance, scalability, and financial value for all of your cloud, mobile, AI, and edge computing applications.
Installation and Setup
We have to install the langchain-couchbase
package.
pip install langchain-couchbase
Vector Store
See a usage example.
from langchain_couchbase import CouchbaseVectorStore
Document loader
See a usage example.
from langchain_community.document_loaders.couchbase import CouchbaseLoader
LLM Caches
CouchbaseCache
Use Couchbase as a cache for prompts and responses.
See a usage example.
To import this cache:
from langchain_couchbase.cache import CouchbaseCache
To use this cache with your LLMs:
from langchain_core.globals import set_llm_cache
cluster = couchbase_cluster_connection_object
set_llm_cache(
CouchbaseCache(
cluster=cluster,
bucket_name=BUCKET_NAME,
scope_name=SCOPE_NAME,
collection_name=COLLECTION_NAME,
)
)
CouchbaseSemanticCache
Semantic caching allows users to retrieve cached prompts based on the semantic similarity between the user input and previously cached inputs. Under the hood it uses Couchbase as both a cache and a vectorstore. The CouchbaseSemanticCache needs a Search Index defined to work. Please look at the usage example on how to set up the index.
See a usage example.
To import this cache:
from langchain_couchbase.cache import CouchbaseSemanticCache
To use this cache with your LLMs:
from langchain_core.globals import set_llm_cache
# use any embedding provider...
from langchain_openai.Embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
cluster = couchbase_cluster_connection_object
set_llm_cache(
CouchbaseSemanticCache(
cluster=cluster,
embedding = embeddings,
bucket_name=BUCKET_NAME,
scope_name=SCOPE_NAME,
collection_name=COLLECTION_NAME,
index_name=INDEX_NAME,
)
)
Chat Message History
Use Couchbase as the storage for your chat messages.
See a usage example.
To use the chat message history in your applications:
from langchain_couchbase.chat_message_histories import CouchbaseChatMessageHistory
message_history = CouchbaseChatMessageHistory(
cluster=cluster,
bucket_name=BUCKET_NAME,
scope_name=SCOPE_NAME,
collection_name=COLLECTION_NAME,
session_id="test-session",
)
message_history.add_user_message("hi!")