Skip to main content

SVM

Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and outliers detection.

This notebook goes over how to use a retriever that under the hood uses an SVM using scikit-learn package.

Largely based on https://github.com/karpathy/randomfun/blob/master/knn_vs_svm.html

%pip install --upgrade --quiet  scikit-learn
%pip install --upgrade --quiet  lark

We want to use OpenAIEmbeddings so we have to get the OpenAI API Key.

import getpass
import os

if "OPENAI_API_KEY" not in os.environ:
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
OpenAI API Key: ········
from langchain_community.retrievers import SVMRetriever
from langchain_openai import OpenAIEmbeddings

Create New Retriever with Texts

retriever = SVMRetriever.from_texts(
["foo", "bar", "world", "hello", "foo bar"], OpenAIEmbeddings()
)

Use Retriever

We can now use the retriever!

result = retriever.invoke("foo")
result
[Document(page_content='foo', metadata={}),
Document(page_content='foo bar', metadata={}),
Document(page_content='hello', metadata={}),
Document(page_content='world', metadata={})]

Was this page helpful?


You can also leave detailed feedback on GitHub.