ascend
from langchain_community.embeddings import AscendEmbeddings
model = AscendEmbeddings(
model_path="/root/.cache/modelscope/hub/yangjhchs/acge_text_embedding",
device_id=0,
query_instruction="Represend this sentence for searching relevant passages: ",
)
emb = model.embed_query("hellow")
print(emb)
API Reference:AscendEmbeddings
[-0.04053403 -0.05560051 -0.04385472 ... 0.09371872 0.02846981
-0.00576814]
doc_embs = model.embed_documents(
["This is a content of the document", "This is another document"]
)
print(doc_embs)
We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See https://huggingface.co/docs/transformers/troubleshooting#incorrect-output-when-padding-tokens-arent-masked.
``````output
[[-0.00348254 0.03098977 -0.00203087 ... 0.08492374 0.03970494
-0.03372753]
[-0.02198593 -0.01601127 0.00215684 ... 0.06065163 0.00126425
-0.03634358]]
model.aembed_query("hellow")
<coroutine object Embeddings.aembed_query at 0x7f9fac699cb0>
await model.aembed_query("hellow")
array([-0.04053403, -0.05560051, -0.04385472, ..., 0.09371872,
0.02846981, -0.00576814], dtype=float32)
model.aembed_documents(
["This is a content of the document", "This is another document"]
)
<coroutine object Embeddings.aembed_documents at 0x7fa093ff1a80>
await model.aembed_documents(
["This is a content of the document", "This is another document"]
)
array([[-0.00348254, 0.03098977, -0.00203087, ..., 0.08492374,
0.03970494, -0.03372753],
[-0.02198593, -0.01601127, 0.00215684, ..., 0.06065163,
0.00126425, -0.03634358]], dtype=float32)
Relatedโ
- Embedding model conceptual guide
- Embedding model how-to guides