FastEmbed by Qdrant
FastEmbed from Qdrant is a lightweight, fast, Python library built for embedding generation.
- Quantized model weights
- ONNX Runtime, no PyTorch dependency
- CPU-first design
- Data-parallelism for encoding of large datasets.
Dependenciesโ
To use FastEmbed with LangChain, install the fastembed
Python package.
%pip install --upgrade --quiet fastembed
Importsโ
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
Instantiating FastEmbedโ
Parametersโ
model_name: str
(default: "BAAI/bge-small-en-v1.5")Name of the FastEmbedding model to use. You can find the list of supported models here.
max_length: int
(default: 512)The maximum number of tokens. Unknown behavior for values > 512.
cache_dir: Optional[str]
(default: None)The path to the cache directory. Defaults to
local_cache
in the parent directory.threads: Optional[int]
(default: None)The number of threads a single onnxruntime session can use.
doc_embed_type: Literal["default", "passage"]
(default: "default")"default": Uses FastEmbed's default embedding method.
"passage": Prefixes the text with "passage" before embedding.
batch_size: int
(default: 256)Batch size for encoding. Higher values will use more memory, but be faster.
parallel: Optional[int]
(default: None)If
>1
, data-parallel encoding will be used, recommended for offline encoding of large datasets. If0
, use all available cores. IfNone
, don't use data-parallel processing, use default onnxruntime threading instead.
embeddings = FastEmbedEmbeddings()
Usageโ
Generating document embeddingsโ
document_embeddings = embeddings.embed_documents(
["This is a document", "This is some other document"]
)
Generating query embeddingsโ
query_embeddings = embeddings.embed_query("This is a query")
Relatedโ
- Embedding model conceptual guide
- Embedding model how-to guides