Skip to main content

Google Imagen

Imagen on Vertex AI brings Google's state of the art image generative AI capabilities to application developers. With Imagen on Vertex AI, application developers can build next-generation AI products that transform their user's imagination into high quality visual assets using AI generation, in seconds.

With Imagen on Langchain , You can do the following tasks

Image Generationโ€‹

Generate novel images using only a text prompt (text-to-image AI generation)

from langchain_core.messages import AIMessage, HumanMessage
from langchain_google_vertexai.vision_models import VertexAIImageGeneratorChat
API Reference:AIMessage | HumanMessage
# Create Image Gentation model Object
generator = VertexAIImageGeneratorChat()
messages = [HumanMessage(content=["a cat at the beach"])]
response = generator.invoke(messages)
# To view the generated Image
generated_image = response.content[0]
import base64
import io

from PIL import Image

# Parse response object to get base64 string for image
img_base64 = generated_image["image_url"]["url"].split(",")[-1]

# Convert base64 string to Image
img = Image.open(io.BytesIO(base64.decodebytes(bytes(img_base64, "utf-8"))))

# view Image
img

Image Editingโ€‹

Edit an entire uploaded or generated image with a text prompt.

Edit Generated Imageโ€‹

from langchain_core.messages import AIMessage, HumanMessage
from langchain_google_vertexai.vision_models import (
VertexAIImageEditorChat,
VertexAIImageGeneratorChat,
)
API Reference:AIMessage | HumanMessage
# Create Image Gentation model Object
generator = VertexAIImageGeneratorChat()

# Provide a text input for image
messages = [HumanMessage(content=["a cat at the beach"])]

# call the model to generate an image
response = generator.invoke(messages)

# read the image object from the response
generated_image = response.content[0]
# Create Image Editor model Object
editor = VertexAIImageEditorChat()
# Write prompt for editing and pass the "generated_image"
messages = [HumanMessage(content=[generated_image, "a dog at the beach "])]

# Call the model for editing Image
editor_response = editor.invoke(messages)
import base64
import io

from PIL import Image

# Parse response object to get base64 string for image
edited_img_base64 = editor_response.content[0]["image_url"]["url"].split(",")[-1]

# Convert base64 string to Image
edited_img = Image.open(
io.BytesIO(base64.decodebytes(bytes(edited_img_base64, "utf-8")))
)

# view Image
edited_img

Image Captioningโ€‹

from langchain_google_vertexai import VertexAIImageCaptioning

# Initialize the Image Captioning Object
model = VertexAIImageCaptioning()

NOTE : we're using generated image in Image Generation Section

# use image egenarted in Image Generation Section
img_base64 = generated_image["image_url"]["url"]
response = model.invoke(img_base64)
print(f"Generated Cpation : {response}")

# Convert base64 string to Image
img = Image.open(
io.BytesIO(base64.decodebytes(bytes(img_base64.split(",")[-1], "utf-8")))
)

# display Image
img
Generated Cpation : a cat sitting on the beach looking at the camera

Visual Question Answering (VQA)โ€‹

from langchain_google_vertexai import VertexAIVisualQnAChat

model = VertexAIVisualQnAChat()

NOTE : we're using generated image in Image Generation Section

question = "What animal is shown in the image?"
response = model.invoke(
input=[
HumanMessage(
content=[
{"type": "image_url", "image_url": {"url": img_base64}},
question,
]
)
]
)

print(f"question : {question}\nanswer : {response.content}")

# Convert base64 string to Image
img = Image.open(
io.BytesIO(base64.decodebytes(bytes(img_base64.split(",")[-1], "utf-8")))
)

# display Image
img
question : What animal is shown in the image?
answer : cat


Was this page helpful?


You can also leave detailed feedback on GitHub.